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SUMMARY

Multigrid can be formulated as an algorithm for an abstract problem that is independent of the

partial differential equation, domain, and discretization method. In such an abstract setting, problems

not arising from partial differential equations can be treated also (c.f. aggregation-disaggregation

methods). Quite general theory exists for linear problems, e.g., C. C. Douglas and J. Douglas, SIAM

J. Numer. Anal., 30 (1993), pp. 136-158.

The general theory was motivated by a series of abstract solvers (Madpack). The latest version (4)

was motivated instead by the theory. Madpack now allows for a wide variety of iterative and direct

solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It

allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there

is a fast, multigrid Poisson solver (two and three dimensions).

The type of solvers and design decisions (including language, data structures, external library

support, and callbacks) are discussed here. Based on the author's experiences with two versions of

Madpack, a better approach is proposed here. This is based on a mixed language formulation (C and

Fortran+preprocessor). Reasons for not just using Fortran, C, or C++ are given. Implementing the

proposed strategy is not difficult.

1. INTRODUCTION

The term ab._tr(wt n__dtigrid was coined in [1]. This refers to theory which is quasi-independent of

the elliptic boundary value problem. The dependence is introduced by assuming that the (discretized)

problem satisfies a very small number of hypotheses which contribute simple expressions to the

convergence rate formula. The theory in [1] is general enough to apply to nonnested solution spaces

and includes example boundary value problems on general domains, with variable coefficients, and

finite difference and finite element discretizations.

The concept of abstract multigrid was pushed to the extreme in [2], where a general theory for

linear problems is presented with virtually no constraints on the origin of the problems.

Abstract multigrid is defined in §2. Two implementations of abstract multilevel methods (see [3]

and [4]) are discussed in §3. A discussion of what might be the right set of languages to implement

*This work was supported in part by IBM and the Office of Naval Research.
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abstract multilevel methods is in §4. Finally, some conclusions are drawn in §5.

2. ABSTRACT MULTIGRID

Assume we are solving some problem, possibly derived from a partial differential equation, possibly

not. Assume further that by various means a sequence of (linear) problems

Asx j = bj, l <_ j < k, (1)

are formed which approximate the real problem

Akxk = bk, (2)

where xs, bs 6 J_/_s, 1 < j < k. Typically, j_4_ is a real or complex vector space when actually com-

puting the solution to the problem. Frequently,

dim(Ms) _ Cdim(Ms-1), C > 1.

There are typically three mappings between the neighboring solution spaces.

AS, Qs " Mj _ Ms-1, 2 <_j < k,p_ : Mj _ Ms+I, l <_ j <_ k -1.

The R i and Qj are restriction (or projection) matrices and the PS are prolongation (or interpolation)

matrices. Frequently, :Pi = cTCT-1, where c 6 IR. The matrices A s and As_I are typically related

through the relation
Aj-I = Q_A_P3-1, 2 < j <_ k.

The Galerkin form of muir/grid requires that QS = PT-I" The QS are frequently injection matrices

when a finite difference discretization is applied to a partial differential equation.

A multilevel correction algorithm is simply defined by

k k-1 k
Algorithm MGC ( lev, {Ai,xs,bj}j=l, {Pj}S=I, {TCs}j_-2 )

1. xt_. _-- Solvert_,(Al_v, x_, bt_)

2. If lev > 1, then repeat 2a-2d until some condition is met:

2a. xl_-i _-- O, bl,,_-i _-- _l_(ble, -- A_,x_,)
k k-1 k- {ns}j: )25. MGC ( lev 1, {A_,xj,bs}_=l, {T'S}S=I,

2C. Xle v +-- Xlev -_- _Lev-lXlev-1

2d. xt_, _ Solven,,_(At_o, xt,,, b_,)

A common condition in step 2 is to do steps 2a-2d some specified number of times (e.g., 0 for one

way multigrid, 1 for a V Cycle, or 2 for a W Cycle).

On the coarsest level, lev = 1, the solver is frequently some flavor of Gauss/an elimination (e.g., a

sparse one). Common solvers on the other levels include relaxation methods (e.g., point, line, plane,

or zebra Gauss-Seidel) and conjugate direction methods (e.g., conjugate gradients or residuals, CGS,

GMRES, or Orthomin). The latter class of iterative methods is most effective on highly nonuniform

meshes with a significant difference between the largest and smallest mesh spacing or diameter on a

level.

A general algorithm that provides very good initial guesses is the nested iteration one:
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Algorithm NIC ( lev, k k-1{A3, xj, bj}j=1, k{7'jL_-I,{nj}s: )
1. MGC ( 1, {As, k }s=l, kxj,bsL= , {Ps {nsL_- )
2. Do steps 2a-2b with lev = 2,...,k:

2a. Xlev +-- _lev- l Xlev-1

2b. MGC(Zev, {nJ}s= )

A one way multilevel algorithm means that Algorithm MGC never performs any portion of its step 2

as part of its use by Algorithm NIC. Most complexity arguments showing that multigrid is of optimal

order are based on Algorithm NIC, not Algorithm MGC.

For nonlinear problems, there are two standard approaches: the Full Approximation Scheme

(FAS) and damped Newton multilevel. FAS is similar to Algorithm MGC, but changes two lines:

,,..,(FAS)
2a. Xtev-1 _ Iq¢,, xlev, btev-1 _ 7"Qev(bte,, - At_,,xlev) - Atcv-lxt_,,-1

.r_(F AS_
2c. Xtev _ Xlev "91- _S)lev-l(Xlev-1 -- r_l.ev a, lev)

T_ ( F AS)Note that in many situations "'1ev = 7_ev. Also, the operator A s is not linear anymore, but involves

function evaluations.

The damped Newton algorithm is a modification of Algorithm NIC. Before each reference to

Algorithm MCC, a Jacobian is formed and a damped Newton step is performed. The last Jacobian

on a level is saved for use in subsequent multilevel correction steps.

The difference between these two nonlinear approaches is easy to categorize. FAS uses a nonlinear

iterative method (e.g., nonlinear Gauss-Seidel) While damped Newton uses standard linear solvers.

When evaluating the nonlinear function is inexpensive, FAS usually produces an approximate solution

faster than the damped Newton multilevel method. However, when the function evaluations are

expensive, the damped Newton multilevel method usually produces an approximate solution faster

than FAS.

Note that in Algorithms MGC and NIC, there are only two obvious components per level: the

solver and the methods for passing information between levels. There are other components hidden

by this formulation: a possible set of preconditioners for use by the solvers, a method for computing

a matrix-vector product for some set of storage formats, and a set of discretization methods in the

partial differential equation case.

For problems not arising from partial differential equations, the only components in Algorithm

MGC that can be optimized are the solvers and the restriction matrices QS and 7¢s. Both theory and

practical experience demonstrate rather conclusively that finding better QS matrices is far superior

to trying to find an optimal iterative method as the solver (e.g., see [5]).

For partial differential equation problems, using better discretization methods usually makes a

bigger impact on the convergence rate than searching for a slightly better interpolation scheme or

iterative solver. There are exceptions to this for trivial problems (e.g., Laplace's equation on a square

with uniform grids).

3. MADPACK

The term madpack is a mnemonic for multigrid (m ultilerd), aggrcgalion-di.saggrrgation package.

It started as a compact set of subroutines for solving problems of the form (1)-(2). The first two

versions were released in 1986 and the fourth in 1992. All versions have been written using numerous
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macrosto hide data structuresand improve the readability. Currently, version 2 is available through

Netlib and MGNet (see [6] and [7] for a description of MGNet). Version 2 is in the public domain.

Version 4 is not really compatible with version 2 and is also owned by IBM. It is available through

IBM's Internet anonymous ftp server and MGNet. All announcements and bug fixes for version 4

are distributed through MGNet.

Version 2 is discussed in §3.1. Version 4 is discussed in §3.2. A number of issues that these two

versions raise are discussed in §4.

3.1. MADPACK, VERSION 2

Version 2 [8] was originally written in an extended flavor of Ratfor. A translator converted this

to Fortran-77. This, in turn, is compiled by whatever compiler is available on a given machine. After

determining that on some machines (e.g., SUN workstations in 1986) C versions of the subroutines

ran up to 40% faster than the Fortran-77 equivalent, the entire code was ported to C. Including

comments, there are only 1500-1600 lines in each language version. All three language versions are

distributed.

Version 2 consists of 9 subroutines:

Routine Description

klmg

klni

klax

kldsnf

kldsss

klres

klsgs

klsgsc

klsgsm

Algorithm MGC

Algorithm NIC

matrix-vector multiply

factor matrices

forward/backward solves

compute residual

Symmetric Gauss-Seidel

Preconditioned conjugate gradients

Preconditioned Orthomin(1)

The first two subroutines, klmg and klni, are meant to be the only user callable subroutines, but any

can be called directly.

Version 2 supports an odd flavor of sparse matrix storage (see [9]) in the solver routines. The

matrices A3 are assumed to have a symmetric nonzero structure, independent of whether or not

Aj = A T. This means that in some cases, a small number of zeroes are actually stored in the sparse
matrix representation of Aj. The main diagonal, the nonzero elements of the columns of the upper

triangular part of A3, and the nonzero elements of the rows of the lower triangular part of Aj are

stored independently (the lower part only if Aj is nonsymmetric). This allows for only half of the

row or column indices to be stored due to the symmetry of the nonzero structure. It also allows for

numerous computational simplifications and some tricks in reducing costs in the direct and iterative

solvers (see [101).

For restriction and prolongation matrices, two additional storage formats are supported. A general

sparse matrix format, as implemented in the second Yale Sparse Matrix Package (see [11]) is useful on

irregular grids. A stencil format is extremely efficient for uniform or tensor product grids. Typically,

rj + c storage elements are used, where r i =Rows(Rj) and c is a small natural number.

130



Table 1: Solvers and preconditioners

Solver Preconditioner

None User ILU Diag SGS SSOR

NoSolver

User

Factor

Solve

Symmetric Gauss-Seidel
Gauss-Seidel

Gauss-Seidel, red-black

Conjugate gradients
Minimum residuals

CGS

CGSTAB

GMRES

any any

GD *

GD *

G *

GSD *

GSD *

GSD GSD

GSD GSD

G *

G *

G *

G G G G

* * G *

G G * G

G G * G

G G * G

* = Error

G = General sparse matrices

S = Stencil matrices

D = Dense matrices

any = any format

Only Algorithms MGC and NIC are included. There is no support for nonlinear or time dependent

problems. Version 2 has been imbedded in other people's nonlinear and time dependent codes,

however. There is also no user callback mechanism, so that if the user has some special solver,

preconditioner, or change of level subroutine, the source code for version 2 has to modified.

3.2. MADPACK, VERSION 4

This is a complete redesign and rewrite of Madpack. It is incompatible with version 2 in numerous

ways. This is actually two quite distinct codes, DAMG [3] and DPMG [4]. DAMG is an abstract

solver for linear and mildly nonlinear problems (FAS is supported). DPMG is a fast Poisson solver

for two and three dimensional problems on simple uniform or tensor product grids.

DAMG supports dense, stencil, and general sparse matrix formats (this time, the more common

first Yale Sparse Matrix Package [12] format was used) in the computational kernels. The dense case

rarely occurs in solving partial differential equations; it is more common when solving aggregation-

disaggregation problems (see [5]). Table 1 contains a summary of the solvers and preconditioners

supported in the IBM version.
Unlike version 2, version 4 requires an external library of solvers (there are some solvers provided,

but not many). What is distributed by IBM runs only on machines with their proprietary engineering

and scientific subroutine library. Currently, this library only runs on IBM mainframes and RISC

System/6000 workstations. Since DAMG was originally written on a machine that is not supported
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Table 2: Level independent information data structure

i

1 mgfn

2 12infm

3 bxsize

4 lndm

5 Inim

6 lnjm

7 levelf

8 levelc

9 startl

10 presva
11 lastdrn

12 lastirn

13 lastjm

14 info

15 restart

20 assist

iparm(i)

Symbolic name Definition

Which multilevel algorithm

Second dimension of infm array

Length of b and x arrays

Length of dm array

Length of irn array

Length of jm array

Index of the finest level

Index of the coarsest level

Index of the starting level

Preserve coarsest level's matrices or not

Index of last element in dm in use

Index of last element in im in use

Index of last element in jm in use

Control of debugging information

Continued computation indicator

When all else fails

by this library, there is obviously a version which uses other libraries, e.g., LAPACK and the first

Yale Sparse Matrix Package. Interfacing DAMG to other libraries is now fairly painless.

DAM(] a_cepts three external Subroutine arguments in case the Users want to use their own

solver(s), preconditioner(s), or change of level subroutine(s). In retrospect, there should have been

a fourth for matrix-vector multiplies. These features are used extensively in DPMG to avoid storing
matrices.

Both DAM(] and DPMG are _tten in the same extended Ratfor as is version 2. Only the

Fortran-77 translation is distributed by IBM, however. The codes assume double precision real data.

Changing to single precision only requires changing one line of a file included by each of the Ratfor

codes. Changing to complex data is only slightly harder.

DAMG ca n b_e_restarted after it returns. This allows for coarse levels to be removed from the

c0ml_utationai flow. It also allows an external adaptive _id refinement procedure to work with

DAMG to add finer levels.

Data is passed to and from DAMG in the standard awkward style imposed by Fortran-77's

limitations. Matrices and vectors are piled into a set of five (integer and real) vectors. As a substitute

for the more natural pointer data type, indices are stored in information data arrays, indexed by the

level number_s_ Tables 2-4)i A lan_ge: that _por_sm0re re_onable data structures_: pointerS,

and dynamic memory allocation and freeing would simplify this.

Table 2 contains information which is level independent. This includes the length and the index

of the last used element of certain vectors, which multilevel algorithm to start with, the indices of

the finest, coarsest, and starting levels, how much debugging information to print, and whether this

is_a rest_of_ earlier_computation, .....................

Table 3 contains information relevant to the computational algorithms which is level dependent.



Table 3: Level dependentalgorithm information data structure

i

1

2

3

4

5

6

7

8

infalg(i, j) on level j

Symbolic name Definition

Solver

SolverIters

Preeond

MGIters

NIIters

IdxXB

NXB

Colors

Which solution method

Iterations of Solver

Which preconditioning method

Iterations of Algorithm MGC or MGFAS

Iterations of Algorithm NIC or NIFAS

Index of first element of bj or x i in b or x

Number of elements in bi and x_

Number of colors in a multicolor ordering

1

2

3

4

5

6

7

8

Table 4: Matrix information data structure

in fret i, k, j) on level j

1 2 3 4 5

AType RType PType NIPType FASl_ype

ACols RCols PCols NIPCols FASRCols

ARows RRows PRows NIPRows FASRRows

ADiml RDiml PDiml NIPDiml FASRDiml

ADim2 RDim2 PDim2 NIPDim2 FASRDim2

IdxA IdxR IdxP IdxNIP IdxFASR

IdxIA IdxIR Id_P IdxINIP IdxIFASR

IdxJA IdxJR IdxJP IdxJNIP IdxJFASR

Table 5: How matrices are chosen for changing levels

Wanted Order of selection

NzPj

_(FAS)
J

_.:_j, T_1+1, and .h/'ZPj

T
.N'ZPj, Pj, and 7¢j+ 1

7_(.FAS) T_j, "PT+I, and .hfiT:P iT+l3
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This includes the solver and preconditioner pairing, how many iterations of the algorithms to use on

this level, the index into the solution and right hand side vectors for xj and bj, and their lengths.

, T_. (FAS)When changing levels, it is very rare that T_j, 7_3 JY'2-_j, and ,..j will all be defined. AfTT_i

corresponds to a special version of P_ in step 2a in Algorithm NIC (see §2). Usually only one or two

of these will be defined. Further, the matrices are typically related to each other in very particular

ways mathematically. An effort has been made to allow users of DAMC ttie opti0n of generating

only one matrix when it can be re-used-or_is_ _he=transpgs_ o_ another matrix. DAMC determines

which operation is wanted and then determines from information in the (three dimensional) infm

data structure (see Table 4) how to change levels. Table 5 contains the order of choice, as determined

by which matrix is wanted. The user callback for changing levels is the last choice unless the matrix

type specifies doing this.

DPMG uses DAMC to do muItileveling. Specialized solvers, interpolation, and projection sub-

routines are used throughout the c0mputations, however. This means that DPMC does not store

matrices normally, thus saving enormous amounts of memory which can be used instead for solving

much larger problems. DPMG solves

-Au = binf_,
u = go on 0ft0,

u, = gl on Oft 1,

(3)

where 0ft0 U 0f_l = 0gt and 0ft0 t3 0f_l = 0.

This is discretized on grids

= ft U 0f_0 U 0ftl.

In essence, linear systems of the form (1)-(2) are solved approximately for a sequence of grids _j.

The vectors xj and b_ can be thought of as "grid functions" on _. The values of b, go, and gl on _j

are stored in be (multiplied by the square of the mesh spacing when a uniform mesh is used). The

values of go on 0Pt0 and _initial guess to the solution u in ft U0ftl are siored in x¢ before the call

to DPMG. DPMG uses a central difference discretization of Poisson's equation, even at Neumann

= b0undary points. DirichIet boundary polrif_s are not eliminated a-priori:

Interpolation is either bilinear, trilinear, or a fourth order method based on (3). The latter uses

the difference operator, similar to a Gauss-Seidel iteration with a three color ordering and a rotated

operator, to improve the order of the interpolation (see [13]).

The three restriction methods are based on stencils. These are described in detail in [14]. The two

second order methods are based on [1,2, 1] and [1, 4,1] weightings in one dimension. Tensor products

are used to generate the stencils in higher dimensions. The fourth order stencil is an average of the

[1,4, 1] tensor product stencil and point injection.

Only Algorithms MCC and NIC are options. The solvers are sparse Caussian ehmination and

Gauss-Seidel with either the natural or red-black orderings.

DPMG was designed to run very fast on four quite different architectures:

1. IBM mainframes with vector units.

2. Conventional vector machines.

3. Nonvector machines with multiply-add hardware chaining.

4. Nonvector machines with no fancy hardware.
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An exampleof 2 above is a Cray, an example of 3 is an IBM RISC System/6000 workstation, and an

example of 4 is a SUN workstation or a PC.

The Gauss-Seidel with the natural ordering subroutines were rewritten in IBM mainframe vector

assembler. These routines are always faster than the Fortran equivalents no matter what size vectors

are used. As an interesting aside, a version was produced that completely vectorizes by using an

odd re-interpretation of how to compute the updates based on the trailing vector elements that

normally do not vectorize. This is described in [15]. The trick does not work in Fortran, C, or C++

unfortunately.

The usual philosophy for vectorizing Gauss-Seidel is to use a red-black ordering. In addition, this

allows the interpolation subroutines to ignore half of the fine grid points. However, the red-black

ordering has an unfavorable feature. The right hand side and approximate solution vectors pass

through cache twice per iteration. Only if a solver is written in a blocked by the cache size manner

can this be alleviated. Due to the boundary conditions in (3) and the fact that the matrices are not

stored in DPMG, this makes things overly complicated to program. Hence, DPMG uses a traditional

implementation for the red-black subroutines.

While the multilevel convergence properties of red-black Gauss-Seidel are better than the naturally

ordered one, both solvers provide about equal performance when using Algorithm NIC and a V Cycle.

4. LANGUAGE ISSUES

In this section, advantages and disadvantages of Fortran, C, and C++ will be discussed in the

context of an abstract multilevel solver. A mixed solution will be proposed.

4.1. FORTRAN

In §3.2, the disadvantages of Fortran-77 in terms of data structures were discussed. There is no

conceivable way to get around this. Even using macros or Ratfor only helps so much. The real

problem is that users of the package still have to initialize the data structures. They are not likely

to use either my macros or Ratfor.

DAMG uses scratch storage in its solvers. Predicting the amount needed for each (solver, precon-

ditioner) pair is an art which no user should ever have to master. Worse, the formulas given for some

popular sparse matrix iterative solvers are wrong (predicting less memory than is required). For all

of the solvers used in §3, the amount of scratch storage can be written in terms of N (the number or

rows or columns), NZ (the number of nonzeroes in Aj), and a constant:

N._ = C_ •N + CNZ "NZ + C+:t,-a. (4)

While default values can be used, the user should be able to override these.

However, there are some areas where Fortran shines. For one, real and complex data types of

various word lengths are part of the language. So, by using a simple preprocessor (e.g.,/lib/cpp or

m4) that is available on most computer systems used by people who do scientific computation, one

source code can be maintained, even if multiple subroutine names are generated, one per data type

supported. For example, in the Ratfor source code for DAMG, subroutine mgal is referenced by

NameIt(mgal)
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struct Matrix {

};

Table 6: New Matrix Structure

int MatrixType; /* the matrix type */

int MatrixCols; /* number of columns */

int MatrixRows; /* number of rows */

int MatrixLDim; /* leading dimension for dense matrices */

void *MatrixCoeffs; /* Pointer to matrix elements */

int *MatrixIA; /* Pointer to IA elements */

int *MatrixJA; /* Pointer to JA elements */

NameIt prepends the letter d (double real), s (single real), z (double complex), or c (single complex)

depending on the definition of a macro, FLOAT.

Another area where Fortran does well is in optimizing code for certain classes of machines, particu-

larly ones with vector units. The author naively assumed vector machines would go like the dinosaurs

with the advent of superscalar, very fast workstations. Unfortunately (or fortunately depending on

your view), vector units are being glued onto superscalar workstations by several manufacturers.

While some C compilers have made serious inroads on producing very high-quality code, Fortran still

holds some advantages in this case.

4.2. C

This language has an obvious disadvantage since complex and double complex are not a part of

the language. While either of these can be defined as a structure, computing with them is inexcusably

awkward. In particular, maintaining a single set of solvers for real and complex data means writing

a set of weird macros to do floating point arithmetic. This is unacceptable.

However, no t a__ of DAMG's or DPMG's subroutines are solvers. In fact, the multilevel algorithm
or choose which solver to call subroutines are really doing bookkeeping, not floating point arithmetic.

For these subroutines. C provides all of the necessary features to dramatically simplify the entire

calling sequence and these subroutines. Just being able to dynamically allocate and free memory

would reduce the user's frustration level with trying to guess how much memory to pass to DAMG

-for scratch storage. -- ....... -: - -- _ - - -- - --

C can easily save addresses of objects, e.g., of subroutines or data objects, in complicated data

structures. Hence, routines can be called incrementally to pass very complex data objects to an

implementation of an abstract multilevel algorithm without any one call being very complicated.

This reduces the aggravation of using a complex program considerably.

413.c++

Many of the positive comments about C apply directly to C++. Classes can be constructed

instead of structures. Further, C++ usually comes with a complex class (but not necessarily in both

single and double precision), alleviating C's worst drawback.

One of C++'s strongest design features is the ability to design classes abstractly. At run time, the
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struct

int

int

void

float

float

float

int

void

int

}

Table 7: External subroutine information structure

ExternSubr {

(*Subr)0; /* Pointer to integer function */

*IParms; /* Pointer to integer parameters */

*FParms; /* Pointer to floating point parameters */

CN; /* See (4) */

CNZ; /* See (4) */

Cextra; /* See (4)*/
SaveScr /* Save scratch areas between calls? */

**Scrs /* Vector of pointers to scratch areas */

*NScrs /* Vector of lengths of scratch areas */

correct version of some virtual routine is accessed. This feature, while useful, is overkill in the context

of abstract multigrid solvers. The data type void _"in C, a pointer to any data type, is sufficient to

overcome many of the reasons why C++ would be useful in this context (see §4.4).

A drawback to using C++ is that there is frequently a lot of overhead hidden from the user.

This makes C++ programs run unnecessarily slower than the equivalent C or Fortran programs.

Interfacing C++ programs to Fortran programs is sometimes challenging, too.

A more serious drawback is that C++ has not yet been standardized. It is evolving with major

new versions coming out yearly. This would not be so bad except that features are sometimes dropped

or changed in incompatible ways in newer versions of the language. For someone who wants to write

a code once and then never have to touch it again, this is not a good point in C++'s favor.

4.4. C AND FORTRAN: MIXED LANGUAGE PROGRAMMING

My personal belief is that mixing Fortran+preprocessor and C is the best choice now. Implement

Algorithms MGC and NIC in C and implement the computational solvers in FORTRAN+preprocessor.

Numerous people who compute only know one language well and are not comfortable normally with

a mixed language set of programs. An interface is described at the end of this section to let these

people use what is proposed.

Suppose that we make no assumption about the language of a solver or preconditioned subroutine,

other than it really can be called from C. Then we do not know if it can dynamically allocate memory.

Hence, some mechanism must be defined for passing a block of memory. One way is to define a

structure for externally called subroutines, e.g., Table 7. The subroutine is expected to return some

indication of whether or not it worked or produced an error. The IParms and FParms are integer

and floating point vectors containing information that the specific subroutine actually needs. Setting

CN=CNZ=Cextra=0 could signify "use the defaults." Note that only one ExternSubr structure has

to be created per subroutine. In this definition, Subr is a pointer (or external reference) to an integer

valued function with a fixed set of arguments. By providing an include file with an abstract solver,

a set of default ExternSubr structures can be given to the user (see Table 1).

Consider Table 4. A single structure can be defined that defines everything in a column of Table
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4, so that information about matrices can be made easier to define. Also, pointers to the actual

floating point and integer vectors or matrices can be defined (instead of indices into a messy vector),

placing all of the relevant information in one place (see Table 6).

Information that is in both Tables 3 and 4 can be re-arranged into a single data structure as in

Table 8. A NULL pointer can be used to indicate the lack of existence of a matrix.

An implementation of Algorithm MGC can then use the information in LevInfo and the ExterSubr

structures to first allocate scratch space (if necessary), then call the solver. Assume lp is a pointer

to leVel j's Levlnfo structure, that lap is a pointer to lp _ Aj's Matrix structure, lps is a pointer to

Ip -_solver's ExternSubr structure, and lpp is a pointer to either lp --_precond's ExternSubr structure

or an empty one. Then the solver is called using the following:

iret = lps --_Subr( dtype, lpp --_Subr, lp --_SolverIters, lp --*SolverRNorm,

lp -*matrix_vec, lap --*MatrixType, lap --_MatrixRows,

lap --*MatrixCols, lap --*MatrixCoeffs, lap -,MatrixIA,

lap --_MatrixJA, lp --_ Xj, lp _ Bj, lps --_IParms,

lps _FParms, resid, scrs, nscrs, scrp, nscrp, oldscr );

Here scrs and scrp are pointers to scratch storage (with lengths nscrs and nscrp) for use by the solver

and the prec6nd]t]-0n_ subroutines, whet_er or not this is the same set of sciatch areas as a previous

call is indicated by oldscr. The resid argument is so that the solver has a place to return the residual,

which is used in calculating the next correction problem on a coarser level.

Numerous iterative procedures, based primarily on conjugate direction methods, require a user

callback routine to calculate matrix-vector products, thus requiring a matrix_vec argument to be

passed. Also, many iterative procedures allow a stopping criterion based on reducing the (possibly

scaled) residual norm by some amount, e.g., lp _SolverRNorm. : :

There is an_imp6rtant issue that must be addressed: There are many people who compute who

do not know C, but only Fortran. Using the data structures advocated in §4.2 would preclude these

people from using the abstract solvers. Some simple subroutines, callable from Fortran (or any

language) that btfild the data structures in a portable manner must be included. For example, a

Fortran program can call a C program which returns a data handle (a small integer):

mgh=mgini ( levels, dtype )

This subroutine allocates space for the structures. The integer argument dtype is used to determine

the data type (c.f., the value of FLOAT in §4.1):

Dtype Data Floating point data description

1 float single precision real

2 double double precision real

3 complex single precision complex

4 dcomptex double precision complex

<0 user -value = length in bytes

While this may seem ugly, this simple mechanism allOws the C codes to be written in a "typeless-

manner. Note that a mechanism is in place for user defined data types as well.

Matrix structures are defined similarly and return a mal ri.r handle:

mat = mgmat ( mgh, type, cols, rows, ldim, coeffs, ia, ja )

Matrix handles are coupled to the data handle.
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struct

Table 8: Level

LevInfo {

struct ExternSubr *solver; /* Pointer to

struct ExternSubr *precond; /* Pointer to

struct ExternSubr *matrix_vec; /* Pointer to

struct ExternSubr *changelev; /* Pointer to

int SolverIters; /*

float SolverRNorm; /*

int MGIters; /*

int NIIters; /*

void *X3; /*

void *B_; /*

int NXj; /*

int NBj; /*

int NZAj; /*

struct Matrix *A j; /*

struct Matrix * Rj ; /*

struct Matrix *Pj; /*

struct Matrix *NIPj; /*

struct Matrix *FASRj; /*

};

Information Structure

how to call solver */

how to call preconditioner */

how to call matrix*vector */

how to call level changer */

Number of iterations in solver() */

How much to reduce residual norm */

Number of iterators of MGC */

Number of iterators of NIC */

Pointer to xj */

Pointer to bj */

Length of xj */

Length of bj */

Number of nonzeroes in Aj */

Pointer to A_ representation */

Pointer to T£j representation */

Pointer to :Pj representation */

Pointer to N'Z:Pj representation */

_(FAS) representation */Pointer to ._j

Subroutines are declared through another C routine:

real CN, CNZ, Cextra

external rtn

...

(set CN, CNZ, and Cextra)

isubr = mgsubr ( mgh, rtn, iparms, fparms, CN, CNZ, Cextra, savscr

)
Note that only the addresses of rtn, iparms, and fparms are saved by mgsubr, not the contents. A

subroutine handle is returned which is coupled to the data handle. Use of the Fortran EXTERNAL

declaration allows subroutine addresses to be passed.

Another routine can be called to setup a LevInfo structure for level j:

iret = mglevi ( mgh, j, isolver, iprecond, imatv, ichlev,

* nsolviters, rnorm, mgiter, niiter, xj, bj, nxj, nbj,

* nza, marc, matr, matp, matnip, matfas )

Here, isolver, iprecond, imatv, and ichlev are the return values from mgsubr or 0 if none is wanted.

Also, mata-matfas are return valves from mgmat or 0 if no matrix exists. The x_j and b_j are the

addresses of the first elements of xj and bj. These may be indexed as X(ixb) and B(ixb), respectively,

depending on the user's programming style. A nonzero return value means an error occurred.

Finally, the multilevel subroutines can be called:

iret = mgmeth ( mgh, iparm, resid )

where iparm is a simplification of the one in Table 2 (it only needs to contain mgalg, startl, levelc,

levelf, and info, but is extendable). The last argument, resid, is an array where the final residual is

returned. A nonzero return value means an error occurred.
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To freespace,a final call canbe made:
iret = mgdone ( mgh ) A nonzerore-

turn valuemeansan error occurred. Obviously, this last call is unnecessary if the program immedi-

ately ends.

The advantage of this approach is that subroutines can be written in whatever language makes the

most sense. Furtlaer, pe0p]e Who pr0gram_ C _or =C-+-t-_Wiii hotbe penalized byhaving to construct
data structures that Only make sense in Fortran. -::-- _ = ..... :==

The worst disadvantage isthat tocomp_le::the library, some knowiedge_s needed about how

the local compiler treats subroutine names. There are three common meth0ds in use and on many

platforms this can be determined automatically. On a very small number of machines, Fortran and

C programs cannot be mixed conVenientiyorat_alli these machines will be ignored by this author.

5. CONCLUSIONS

In this paper, abstract multiievei methods were reviewed. Two versions of the author's publicly

distributed multilevel codes (Madpack) were discussed. From the experience of these Codes, a model

of a better approach usiQ a mixed language approach (C and Fortran+preprocess0r) Was proposed.

Implementing such a system, starting from having already working solvers (e.g., [8], [3], and [4]) is a

simple exercise for an expert in C and Fortran programming. ........
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